Extended Fourier analysis of signals
نویسنده
چکیده
This summary of the doctoral thesis [8] is created to emphasize the close connection of the proposed spectral analysis method with the Discrete Fourier Transform (DFT), the most extensively studied and frequently used approach in the history of signal processing. It is shown that in a typical application case, where uniform data readings are transformed to the same number of uniformly spaced frequencies, the results of the classical DFT and proposed approach coincide. The difference in performance appears when the length of the DFT is selected greater than the length of the data. The DFT solves the unknown data problem by padding readings with zeros up to the length of the DFT, while the proposed Extended DFT (EDFT) deals with this situation in a different way, it uses the Fourier integral transform as a target and optimizes the transform basis in the extended frequency range without putting such restrictions on the time domain. Consequently, the Inverse DFT (IDFT) applied to the result of EDFT returns not only known readings, but also the extrapolated data, where classical DFT is able to give back just zeros, and higher resolution are achieved at frequencies where the data has been successfully extended. It has been demonstrated that EDFT able to process data with missing readings or gaps inside or even nonuniformly distributed data. Thus, EDFT significantly extends the usability of the DFT based methods, where previously these approaches have been considered as not applicable [10-38]. The EDFT founds the solution in an iterative way and requires repeated calculations to get the adaptive basis, and this makes it numerical complexity much higher compared to DFT. This disadvantage was a serious problem in the 1990s, when the method has been proposed. Fortunately, since then the power of computers has increased so much that nowadays EDFT application could be considered as a real alternative.
منابع مشابه
Dynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...
متن کاملMulti-Resolution Fourier Analysis Part I: Fundamentals
In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequalit...
متن کاملExtrapolation of multi-dimensional Fourier signals
There is a well-known method of extrapolation of signals with the finite Fourier spectrum developed by Gershberg and Papoulis. Aizenberg introduced a method which uses the theory of Hardy spaces in complex analysis. In a recent publication, a new extrapolation method for one-dimensional signals was proposed. The method is based on combining the methods of Aizenberg and Gershberg-Papoulis and so...
متن کاملPathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.2033 شماره
صفحات -
تاریخ انتشار 2013